3.6 ENERGY CONSUMPTION

3.6.1 Introduction

1

2

- 3 This section focuses on the demand for electrical power that would be generated by operation of the
- Species Conservation Habitat (SCH) Project. Diesel fuel, gasoline, and power used during construction
- 5 and maintenance activities would be the only other source of substantive energy consumption; the
- 6 permanent employees would use minor amounts of fuel. The equipment and vehicles used during
- 7 construction and maintenance would be the minimum needed to perform the required work, and fuel
- 8 would not be used in a wasteful manner. Therefore, fuel consumption and electrical demand during
- 9 construction is not addressed in this section. The study area comprises the service area of the Imperial
- 10 Irrigation District (IID), which would provide electrical power to the SCH Project. Issues associated with
- 11 Project compatibility with geothermal development are addressed in Section 3.13, Land Use.
- Table 3.6-1 summarizes the impacts of the six Project alternatives on energy consumption, compared to
- both the existing conditions and the No Action Alternative.

Table 3.6-1 Summary of Impacts on Energy Consumption											
Impact	Basis of Comparison	Project Alternative					Mitigation Measures				
		1	2	3	4	5	6				
Impact EN-1: Pumping would require power for the duration of the Project.	Existing Condition	L	L	L	L	L	L	None required			
	No Action	L	L	L	L	L	L	None required			

Note:

- O = No Impact
- L = Less-than-Significant Impact
- S = Significant Impact, but Mitigable to Less than Significant
- U = Significant Unavoidable Impact
- B = Beneficial Impact

14

15

3.6.2 <u>Regulatory Requirements</u>

16 3.6.2.1 State Regulations

- 17 A number of state laws dealing with renewable energy and greenhouse gas (GHG) emissions have
- affected the way IID chooses to acquire its energy resources, including Senate Bill (SB) 1368, SB 2120,
- 19 SB 1078, Assembly Bill (AB) 32, and Executive Orders S-14-08 and S-21-09 (IID 2010a).
- 20 SB 1368 prohibits any retail seller of electricity in California from entering into a long-term (greater-than-
- 21 5-year) financial commitment for baseload generation if the GHG emissions are higher than those from a
- 22 combined-cycle natural gas power plant. This performance standard applies to electricity generated out of
- state as well as in state, and to publicly owned as well as investor-owned electric utilities.
- SB 2120 first established a standard to provide 20 percent of energy from renewable sources by 2010.
- 25 This target does not directly bind IID, although IID voluntarily agreed to meet this goal in 2007 as a result
- of rate impact considerations (IID 2010a).

- 1 Established in 2002 under SB 1078 and accelerated in 2006 under SB 107, California's Renewables
- 2 Portfolio Standard requires retail suppliers of electric services to increase procurement from eligible
- 3 renewable energy resources by at least 1 percent of their retail sales annually, until they reach 20 percent
- 4 by 2010. IID is required to register all renewable resources that it owns or constructs, track the net output
- 5 from each of the certified resources, and report it to the Western Region Renewable Electricity
- 6 Information System established by the California Energy Commission (IID 2010a). For purchase power
- 7 agreements, the generator owner is required to provide the necessary data to this information system to
- 8 verify that sales to the IID are certified as renewable resources (IID 2010a).
- 9 The California Global Warming Solutions Act of 2006, widely known as AB 32, and Governor
- Schwarzenegger's Executive Order S-14-08 direct all state entities, including irrigation districts, to
- achieve at least 33 percent renewable energy by 2020. AB 32 requires the California Air Resources Board
- to develop and enforce regulations for the reporting and verification of statewide GHG emissions,
- including establishing a cap and trade emissions control mechanism by 2012.
- Since 2006, California has had a mandate to increase the use of renewable generation to 20 percent of
- retail electricity sales by 2010 (refer to description of SB 1078 and SB 107 above). In November 2008,
- 16 Governor Schwarzenegger signed Executive Order S-14-08, which raises California's renewable energy
- goals to 33 percent by 2020. This enhanced target is intended to help California meet statewide GHG
- 18 emission reduction targets, and has been reiterated by California Executive Order S-21-09, which requires
- 19 California Air Resources Board, by July 31, 2010, to establish a regulation consistent with this 33 percent
- 20 target by 2020; however, no new renewable energy standard pursuant to S-21-09 has been set to date.

21 3.6.2.2 Imperial Irrigation District, 2010 Integrated Resources Plan

- 22 IID's 2010 Integrated Resources Plan (IID 2010a) attempts to merge IID's goals and objectives with
- 23 regulatory requirements that mandate the adoption of new renewable energy portfolio standards, reducing
- 24 GHG emission, and acquiring cost-effective resources. The plan includes a number of goals, including the
- 25 following:
- Implement energy efficiency programs necessary to reduce load by at least 5 percent by 2015, with a 10 percent load reduction goal by 2020;
- Meet or exceed all state and Federal planning criteria for renewable resources with a goal of
- 29 generating 20 percent of energy requirements from renewable sources by 2012, 23 percent by 2014,
- 30 26 percent by 2017, and at least 33 percent by 2020; and
- Reduce GHG emissions by at least 35 percent by 2020 in comparison to 2009 levels to minimize the cost of purchasing emission allowance credits in the marketplace.

3.6.3 Affected Environment

- 34 IID provides energy on a wholesale and retail basis to more than 145,000 customers in Imperial,
- Riverside, and San Diego counties (IID 2010b). IID's distribution system in the vicinity of the SCH
- Project is shown on Figure 3.6-1. IID obtains power from a variety of sources, including hydroelectric
- plants located on the All American Canal System; the San Juan Unit 3, a coal plant in New Mexico; the
- 38 Palo Verde Nuclear Generation Station in Arizona; and natural gas and diesel generation within or near
- 39 the service area boundary. In 2009, the peak demand in the service area was slightly under 1,000
- 40 megawatts (MW).

41

33

42

Figure 3.6-1 IID's Power Distribution System near the SCH Project

1

2

- IID is required to have generation resources providing reserves totaling approximately 15 percent of load.
- 2 Thus, IID is required to be able to deliver nearly 1,150 MW (for the peak summer months). IID expects to
- 3 see significant load growth as the California economy begins to recover, and retail energy use is expected
- 4 to increase as a result. However, IID's energy forecasts still show a small energy increase of around 0.7
- 5 percent from 2008 through 2012 (IID 2010a).
- 6 IID is proposing a new generation plan, the Base Case Power Supply Plan, to meet renewable portfolio
- 7 standards and GHG emission reduction requirements for the period 2010 through 2012. The proposed
- 8 resource plan includes a new 145 MW combined cycle generation facility at the existing El Centro Steam
- 9 Plant Unit 3 by 2012; entering into a power purchase agreement for 50 MW of geothermal generation for
- delivery by 2013; entering into a power purchase agreement for 20 MW of solar thermal generation by
- 2012; and entering into a power purchase agreement for 17 MW of geothermal generation by 2014 with
- other Southern California Public Power Authority members (IID 2010a).
- 13 IID is implementing energy efficiency programs with the goal of reducing peak demand by up to 50 MW
- within 5 years, including conservation and demand-side management programs. These programs target air
- 15 conditioning, lighting, and equipment efficiency. Some new programs implemented by IID in 2010
- include the Ice Bear Thermal Energy Storage Program, which could reduce peak demand by almost 10
- MW, and the Key Customer Demand Response Program, which pays major industrial and commercial
- customers to curtail their load or operate on-site generators during periods of high demand. IID hopes to
- acquire 30-40 MW from the Key Customer Demand Response Program in 2010 (IID 2010a).

20 3.6.4 <u>Impacts and Mitigation Measures</u>

21 3.6.4.1 Impact Analysis Methodology

- 22 Project impacts were assessed by considering whether the energy consumption resulting from the
- 23 operation of Project alternatives would be wasteful or whether opportunities exist to minimize power
- 24 demand.

25 3.6.4.2 Thresholds of Significance

26 Significance Criteria

- 27 Impacts on energy consumption would be significant if the Project alternatives would result in the
- inefficient, wasteful, or unnecessary consumption of energy.

29 Application of Significance Criteria

- 30 Incidental energy use would be associated with the trailer used by the permanent employees as office
- 31 space (e.g., for lighting). This minimal electrical demand would not be wasteful and is not considered
- 32 further. Power demand would result primarily from the operation of electric pumps to deliver water to the
- Project from the New or Alamo rivers (under Alternatives 2, 3, 5, and 6) and the Salton Sea (all Project
- 34 alternatives). The river diversion would be located within 100 yards of the SCH delivery point and would
- be a low-head lift (about 10 feet). The Sea diversion, however, could be up to 2 miles away from the SCH
- ponds. The lift would initially be low head (10 to 15 feet) but would increase as the Sea recedes. Three-
- 37 phase power would be extended to the pump locations.
- The amount of water supply pumped from each source would vary depending on the desired salinity of
- 39 the ponds and the length of time the water would remain in the pond (residence time). The energy
- 40 required to pump from a river would be less than the energy required to pump a similar amount from the
- Salton Sea because the required head (lift and length of pipeline) would be greater and because the
- 42 density of saline water would be greater than the water diverted from the rivers. In addition, the seawater

- pumps may be subject to fouling from salt that would reduce the pump efficiency over time. The
- 2 residence time and salinity of the pond water also would change the power requirements. Higher salinity
- 3 levels and shorter residence would require more power consumption than a longer residence time with
- 4 lower salinity water.
- 5 The total power requirements for the Project alternatives, assuming 4-week and 16-week residence times
- 6 for different concentrations of salinity are shown in Table 3.6-2.

Table 3.6-2 Power Requirements (in Kilowatt Hours) for Different Residence Times an Salinity Concentrations													
4-week Reside	ence Time												
	20 ppt			40 ppt									
Alternative	Seawater	River Water	Total	Seawater	River Water	Total							
1	16,517		16,517	60,935		60,935							
2	18,067	2,663	20,730	41,971	743	42,714							
3	26,142	5,566	31,708	61,733	2,129	63,861							
4	14,616		14,616	33,430		33,430							
5	8,534	1,636	10,169	20,010	488	20,498							
6	32,958	4,103	37,061	39,213	1,076	40,289							
16-week Resid	lence Time	·	·	·	·								
	20 ppt				40 ppt								
Alternative	Seawater	River Water	Total	Seawater	River Water	Total							
1	3,185		3,185	22,025		22,025							
2	1,608	780	2,388	9,103	210	9,314							
3	5,211	1,976	7,187	11,660	360	12,020							
4	1,287		1,287	6,972		6,972							
5	1,014	516	1,530	4,824	154	4,978							
6	2,416	1,076	3,491	15,433	250	15,683							
Note: ppt = par	ts per thousand		•	•									

7

12

- Because the SCH is a proof-of-concept project, the testing of different salinity and residence times is an integral part of the Project, and the SCH operation would result in different pumping rates and energy
- consumption as identified in Table 3.6-2. This use of energy is not considered inherently unnecessary or
- 11 wasteful.

3.6.4.3 No Action Alternative

- 13 As described in the Salton Sea Ecosystem Restoration Program Final Programmatic Environmental
- 14 Impact Report (California Department of Water Resources and California Department of Fish and Game
- 15 2007), the No Action Alternative would involve construction and operations and maintenance activities
- for pupfish channels. Additionally, IID, as mitigation for the IID Water Conservation and Transfer

- 1 Project, is required to relocate campgrounds, roads, and trails that are currently located adjacent to the
- 2 Salton Sea at Salton Sea State Recreation Area, as well as boat launches along the shoreline. Under the
- 3 No Action Alternative, it is assumed that IID would provide electrical services to facility and construction
- 4 sites around the shoreline and on the seabed. Overall, electrical consumption is projected to increase
- 5 steadily in the future. It is anticipated that IID will continue to implement its *Integrated Resources Plan*
- 6 and energy efficiency planning to meet future demands and requirements for incorporating alternative
- 7 energy sources into its energy network.

8 3.6.4.4 Alternative 1 – New River, Gravity Diversion + Cascading Ponds

- 9 Impact EN-1: Pumping would require power for the duration of the Project (less-than-significant
- impact). The New River diversion would be gravity fed under Alternative 1; thus, pumping from the
- Salton Sea would constitute the primary long-term energy demand. A seawater pump would be provided
- from 1 to 2 miles from the existing shore, and a recirculation pump would be located at the intermediate
- berm separating the independent pond from the cascading pond. The seawater pump would lose
- 14 efficiency over time because of the hypersaline water being pumped, but would be maintained as
- appropriate to reduce fouling and would be replaced when needed. The recirculation pump would also
- 16 recirculate saline water from the ponds to offset some of the Sea's pumping. The recirculation pump
- would collect water at the cascading pond and introduce it into the saline water line at the head of the
- system. Thus, the Project would not use energy in an inefficient or wasteful manner. This impact would
- be less than significant when compared to both the existing environmental setting and the No Action
- 20 Alternative.
- 3.6.4.5 Alternative 2 New River, Pumped Diversion
- 22 Impact EN-1: Pumping would require power for the duration of the Project (less-than-significant
- 23 **impact).** Alternative 2 differs from Alternative 1 in that water would be pumped from the New River as
- 24 well as from the Salton Sea. The Sea's pumping station would be located 1 to 2 miles from the shore. As
- 25 discussed above, the efficiency of the saline pump is of more concern than that of the river water pump,
- but the pump would be maintained appropriately and replaced when needed. Therefore, impacts would be
- 27 less than significant.
- 28 3.6.4.6 Alternative 3 New River, Pumped Diversion + Cascading Ponds
- 29 Impact EN-1: Pumping would require power for the duration of the Project (less-than-significant
- impact). The discussions under Alternatives 1 and 2 are applicable to this alternative.
- 3.6.4.7 Alternative 4 Alamo River, Gravity Diversion + Cascading Pond
- 32 Impact EN-1: Pumping would require power for the duration of the Project (less-than-significant
- impact). The discussion under Alternative 1 is generally applicable to this alternative. Alternative 4
- differs from Alternative 1 in that no recirculation pump would be required, and a seawater pump would be
- 35 provided at Red Hill with a pipeline projecting out into the Sea. This pump would be easier to maintain
- than one in the Sea because it would be land-based.
- 3.6.4.8 Alternative 5 Alamo River, Pumped Diversion
- 38 Impact EN-1: Pumping would require power for the duration of the Project (less-than-significant
- impact). The discussions under Alternatives 1 and 4 are applicable to Alternative 5.

- 3.6.4.9 Alternative 6 Alamo River, Pumped Diversion + Cascading Ponds
- 2 Impact EN-1: Pumping would require power for the duration of the Project (less-than-significant
- impact). The discussions under Alternatives 2 and 4 are applicable to Alternative 6.
- 4 3.6.5 References
- 5 California Department of Water Resources and California Department of Fish and Game. 2007. Salton
- 6 Sea Ecosystem Restoration Program Final Programmatic Environmental Impact Report.
- 7 Imperial Irrigation District (IID). 2010a. 2010 Integrated Resources Plan.
- 8 Imperial Irrigation District (IID). 2010b. Energy history. Website
- 9 (http://www.iid.com/index.aspx?page=263) accessed November 1, 2010.

10

SECTION 3.0 AFFECTED ENVIRONMENT, IMPACTS, AND MITIGATION MEASURES

1 2 3 4 5 6 7 8 9 This Page Intentionally Left Blank 10 11